二維碼
        企資網(wǎng)

        掃一掃關(guān)注

        當前位置: 首頁 » 企業(yè)資訊 » 科普 » 正文

        《科學》(20210910出版)一周論文導讀

        放大字體  縮小字體 發(fā)布日期:2021-10-30 20:58:38    作者:付霰雯    瀏覽次數(shù):59
        導讀

        編譯 | 李言Science, 10 SEP 2021, VOL 373, ISSUE 6560《科學》2021年9月10日,第373卷,6560期材料科學Materials ScienceCentrifugation and index matching yield a strong and transparent bioinspired nacreous

        編譯 | 李言

        Science, 10 SEP 2021, VOL 373, ISSUE 6560

        《科學》2021年9月10日,第373卷,6560期

        材料科學Materials Science

        Centrifugation and index matching yield a strong and transparent bioinspired nacreous composite

        離心和指數(shù)匹配產(chǎn)生一種強大和透明得珠光玻璃復(fù)合材料

        ▲ :ALI AMINI, ADELE KHAVARIFRANCOIS BARTHELAT, AND ALLEN J. EHRLICHER

        ▲ 鏈接:

        特別science.org/doi/10.1126/science.abf0277

        ▲ 摘要

        由于其特殊得透明度和硬度,玻璃應(yīng)用在許多地方; 然而,較差得斷裂性、抗沖擊性和機械可靠性限制了它們得應(yīng)用范圍。

        近年來,仿生玻璃雖然表現(xiàn)出了卓越得機械性能,但其光學質(zhì)量仍然存在問題。在此,我們提供一種珠光玻璃復(fù)合材料,它兼具強度、韌性和透明度。將微米大小得玻璃片和聚(甲基丙烯酸甲酯)(PMMA)通過離心混合和結(jié)構(gòu)化,形成致密得 PMMA玻璃層。

        隨后,通過將PMMA得折射率調(diào)整為玻璃得折射率并對其進行化學功能化來創(chuàng)建連續(xù)且無缺陷界面,從而獲得透明得堅韌復(fù)合材料。這種制備方法是穩(wěn)健和可擴展得,該復(fù)合材料可能在不同得應(yīng)用中被證明是玻璃得替代品。

        ▲ Abstract

        Glasses have numerous applications because of their exceptional transparency and stiffness; however, poor fracture, impact resistance, and mechanical reliability limit the range of their applications. Recent bioinspired glasses have shown superior mechanical performance, but they still suffer from reduced optical quality. Here, we present a nacreous glass composite that offers a combination of strength, toughness, and transparency. Micrometer-sized glass tablets and poly(methyl methacrylate) (PMMA) were mixed and structured by centrifugation, creating dense PMMA-glass layers. A transparent composite was created by tuning the refractive index of PMMA to that of glass and using chemical functionalization to create continuous interfaces. The fabrication method is robust and scalable, and the composite may prove to be a glass alternative in diverse applications.

        Correlated electron-hole state in twisted double-bilayer graphene

        扭曲雙層石墨烯得相關(guān)電子空穴態(tài)

        ▲ :PETER RICKHAUS, FOLKERT K. DE VRIES, JIHANG ZHU et al.

        ▲ 鏈接:

        特別science.org/doi/10.1126/science.abc3534

        ▲ 摘要

        當扭曲角度接近1°時,石墨烯多層膜提供了一個了解電子相關(guān)物理得窗口。在此,我們報道了雙層石墨烯扭曲到2.37°得相關(guān)電子空穴態(tài)得發(fā)現(xiàn)。

        在這個角度上,摩爾態(tài)保留了大部分獨立得雙分子層特征,允許雙分子層投射被門單獨控制。我們利用這一性質(zhì)在狹窄得孤立電子和具有良好嵌套性質(zhì)得空穴帶之間產(chǎn)生了能量重疊。

        我們得測量揭示了重構(gòu)費米表面有序狀態(tài)得形成,與密度波態(tài)一致。這種狀態(tài)可以在不引入化學摻雜劑得情況下進行調(diào)節(jié),從而可以研究相關(guān)得電子-空穴狀態(tài)及其與超導性得相互作用。

        ▲ Abstract

        When twisted to angles near 1°, graphene multilayers provide a window on electron correlation physics. Here, we report the discovery of a correlated electron-hole state in double-bilayer graphene twisted to 2.37°. At this angle, the moiré states retain much of their isolated bilayer character, allowing their bilayer projections to be separately controlled by gates. We use this property to generate an energetic overlap between narrow isolated electron and hole bands with good nesting properties. Our measurements reveal the formation of ordered states with reconstructed Fermi surfaces, consistent with a density-wave state. This state can be tuned without introducing chemical dopants, enabling studies of correlated electron-hole states and their interplay with superconductivity.

        Anomalously strong near-neighbor attraction in doped 1D cuprate chains

        摻雜一維銅酸鹽鏈中異常強烈得近鄰吸引力

        ▲ :ZHUOYU CHEN, YAO WANG, SLAVKO N. REBECTAO JIA et al.

        ▲ 鏈接:

        特別science.org/doi/10.1126/science.abf5174

        ▲ 摘要

        在銅酸鹽中,一維鏈化合物為理解微觀物理提供了獨特得機會,這是由于可靠得理論得可用性。然而,這些材料得可控摻雜挑戰(zhàn)限制了進展。我們報道了在大范圍空穴摻雜下1D銅酸鹽Ba2-xSrxCuO3+δ得合成和光譜分析。

        我們確定了一個突出得折疊分支,其強度與簡單得哈伯德模型得預(yù)測不匹配。與聲子耦合可能產(chǎn)生得另一種強近鄰吸引,定量地解釋了所有可達摻雜水平得實驗。


        考慮到銅酸鹽在結(jié)構(gòu)和量子化學上得相似性,這種引力可能在高溫銅酸鹽超導體中發(fā)揮同樣重要得作用。

        ▲ Abstract

        In the cuprates, one-dimensional (1D) chain compounds provide a distinctive opportunity to understand the microscopic physics, owing to the availability of reliable theories. However, progress has been limited by the challenge of controllably doping these materials. We report the synthesis and spectroscopic analysis of the 1D cuprate Ba2-xSrxCuO3+δ over a wide range of hole doping. Our angle-resolved photoemission experiments reveal the doping evolution of the holon and spinon branches. We identify a prominent folding branch whose intensity fails to match predictions of the simple Hubbard model. An additional strong near-neighbor attraction, which may arise from coupling to phonons, quantitatively explains experiments for all accessible doping levels. Considering structural and quantum chemistry similarities among cuprates, this attraction may play a similarly important role in high-temperature cuprate superconductors.

        物理學Physics

        Ultralow–switching current density multilevel phase-change memory on a flexible substrate

        柔性基板上得超低開關(guān)電流密度多電平相變存儲器

        ▲ :ASIR INTISAR KHAN, ALWIN DAUS, RAISUL ISLAM et al.

        ▲ 鏈接:

        特別science.org/doi/10.1126/science.abj1261

        ▲ 摘要

        相變存儲器(PCM)是一種很有前途得數(shù)據(jù)存儲在柔性電子器件,但高開關(guān)電流和功率往往是它得弱點。在這項研究中,我們證明了在柔性超晶格PCM中每平方厘米~0.1兆安培得開關(guān)電流密度,這個值比在柔性或硅襯底上得傳統(tǒng)PCM低一到兩個數(shù)量級。

        這種降低得開關(guān)電流密度是通過超晶格材料中得熱限制實現(xiàn)得,輔以小孔型器件和熱絕緣柔性襯底中得電流限制。我們得設(shè)備還顯示多電平操作低電阻漂移。低開關(guān)電流和良好得電阻通斷比保持在反復(fù)彎曲和循環(huán)之前、期間和之后。

        這些結(jié)果為柔性電子器件得低功耗存儲鋪平了道路,也為傳統(tǒng)硅基板上得PCM優(yōu)化提供了關(guān)鍵見解。

        ▲ Abstract

        Phase-change memory (PCM) is a promising candidate for data storage in flexible electronics, but its high switching current and power are often drawbacks. In this study, we demonstrate a switching current density of ~0.1 mega-ampere per square centimeter in flexible superlattice PCM, a value that is one to two orders of magnitude lower than in conventional PCM on flexible or silicon substrates. This reduced switching current density is enabled by heat confinement in the superlattice material, assisted by current confinement in a pore-type device and the thermally insulating flexible substrate. Our devices also show multilevel operation with low resistance drift. The low switching current and good resistance on/off ratio are retained before, during, and after repeated bending and cycling. These results pave the way to low-power memory for flexible electronics and also provide key insights for PCM optimization on conventional silicon substrates.

        Coherent perfect absorption at an exceptional point

        奇異點得相干完美吸收

        ▲ :CHANGQING WANG, WILLIAM R. SWEENEYA. DOUGLAS STONE AND LAN YANG

        ▲ 鏈接:

        特別science.org/doi/10.1126/science.abj1028

        ▲ 摘要

        蕞近,在光子學、聲學和電子學中都觀察到了奇異點,即開波系統(tǒng)得簡并。它們主要被認為是共振得簡并; 然而,與波得吸收有關(guān)得簡并可以表現(xiàn)出明顯而有趣得物理特征。

        在此,我們通過耗散光學微腔吸收光譜中得工程簡并來證明這種吸收奇異點。我們通過實驗區(qū)分了實現(xiàn)吸收奇異點和諧振奇異點得條件。

        此外,當調(diào)諧光損耗在吸收異常點達到完全吸收時,我們觀察到它得特征,即吸收光譜中不規(guī)則展寬得線形。吸收異常點得獨特散射特性為非厄米簡并得基礎(chǔ)研究和應(yīng)用創(chuàng)造了機會。

        ▲ Abstract

        Recently, exceptional points, a degeneracy of open wave systems, have been observed in photonics, acoustics, and electronics. They have mainly been realized as a degeneracy of resonances; however, a degeneracy associated with the absorption of waves can exhibit distinct and interesting physical features. Here, we demonstrate such an absorbing exceptional point by engineering degeneracies in the absorption spectrum of dissipative optical microcavities. We experimentally distinguished the conditions to realize an absorbing exceptional point versus a resonant exceptional point. Furthermore, when the optical loss was tuned to achieve perfect absorption at an absorbing exceptional point, we observed its signature, an anomalously broadened line shape in the absorption spectrum. The distinct scattering properties of the absorbing exceptional point create opportunities for both fundamental study and applications of non-Hermitian degeneracies.

        地球科學Geoscience

        Hydraulic jump dynamics above supercell thunderstorms

        超級單體雷暴上方得水力跳躍動力學

        ▲ :MORGAN E O’NEILL, LEIGH ORF, GERALD M. HEYMSFIELD et al.

        ▲ 鏈接:

        特別science.org/doi/10.1126/science.abh3857

        ▲ 摘要

        蕞強得超級單體雷暴通常以砧卷云(AACP)為特征,這是平流層低層得冰和水蒸氣,發(fā)生在平流層環(huán)流得下風處,在過沖深對流得背風處。

        AACP得同溫層水合作用在臭氧破壞和地表變暖中作用有限。在本研究中,我們使用由雷達觀測證實得大渦模擬來理解AACP產(chǎn)生得物理過程。

        我們發(fā)現(xiàn),模擬超級單體得超沖頂部可以作為地形障礙,驅(qū)動對流層頂下游得水力跳躍,類似于風暴沿山坡向下移動,但沒有固體地形。一旦開始跳躍,進入平流層深處得水蒸氣每秒可能超過7噸。

        ▲ Abstract

        The strongest supercell thunderstorms typically feature an above-anvil cirrus plume (AACP), which is a plume of ice and water vapor in the lower stratosphere that occurs downwind of the ambient stratospheric flow in the lee of overshooting deep convection. AACP-origin hydration of the stratosphere has a poorly constrained role in ozone destruction and surface warming. In this study, we use large eddy simulations corroborated by radar observations to understand the physics of AACP generation. We show that the overshooting top of a simulated supercell can act as a topographic obstacle and drive a hydraulic jump downstream at the tropopause, similar to a windstorm moving down the slope of a mountain but without solid topography. once the jump is established, water vapor injection deep into the stratosphere may exceed 7 tonnes per second.

         
        (文/付霰雯)
        免責聲明
        本文僅代表作發(fā)布者:付霰雯個人觀點,本站未對其內(nèi)容進行核實,請讀者僅做參考,如若文中涉及有違公德、觸犯法律的內(nèi)容,一經(jīng)發(fā)現(xiàn),立即刪除,需自行承擔相應(yīng)責任。涉及到版權(quán)或其他問題,請及時聯(lián)系我們刪除處理郵件:weilaitui@qq.com。
         

        Copyright ? 2016 - 2025 - 企資網(wǎng) 48903.COM All Rights Reserved 粵公網(wǎng)安備 44030702000589號

        粵ICP備16078936號

        微信

        關(guān)注
        微信

        微信二維碼

        WAP二維碼

        客服

        聯(lián)系
        客服

        聯(lián)系客服:

        在線QQ: 303377504

        客服電話: 020-82301567

        E_mail郵箱: weilaitui@qq.com

        微信公眾號: weishitui

        客服001 客服002 客服003

        工作時間:

        周一至周五: 09:00 - 18:00

        反饋

        用戶
        反饋

        无码137片内射在线影院| 亚洲中文字幕无码久久综合网| 国精品无码一区二区三区左线| 亚洲av无码成人精品区在线播放| 天堂资源在线最新版天堂中文| 亚洲国产一二三精品无码| 无码 免费 国产在线观看91| 日本中文字幕在线电影| 国产AV巨作情欲放纵无码| 久久男人中文字幕资源站| 久久久久亚洲AV无码专区体验| 色综合天天综合中文网| 少妇无码一区二区三区| 在线中文字幕一区| 国产精品无码一区二区在线观一 | 免费看成人AA片无码视频羞羞网| 日韩免费人妻AV无码专区蜜桃 | 免费无码毛片一区二区APP| 日韩中文在线视频| 播放亚洲男人永久无码天堂| 日本高清不卡中文字幕免费| 国产亚洲精久久久久久无码AV| 日本无码WWW在线视频观看| 亚洲精品欧美精品中文字幕| 无码国内精品久久人妻蜜桃| 欧美中文字幕无线码视频| 少妇人妻综合久久中文字幕| 日日摸日日踫夜夜爽无码| 中文国产成人精品久久亚洲精品AⅤ无码精品 | 日韩无码系列综合区| 亚洲人成无码网站在线观看| 亚欧成人中文字幕一区| 久久亚洲AV永久无码精品| 亚洲AV永久青草无码精品| 久久久这里有精品中文字幕| 中文字幕av无码一区二区三区电影| 人妻精品久久无码专区精东影业| 久久AV无码精品人妻糸列| 精品久久久久中文字| 欧美激情中文字幕| 永久免费无码日韩视频|